Computergrafik

Universität Osnabrück, Henning Wenke, 2012-04-24

Noch Kapitel II: Mathematische Grundlagen

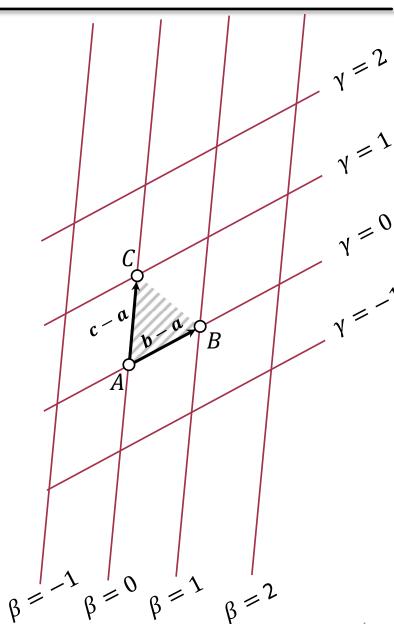
2.3

Dreiecke

2D Baryzentrische Koordinaten I

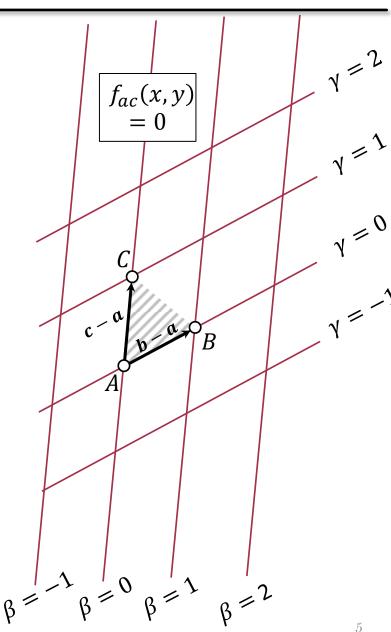
- Definiert durch Eckpunkt A als Ursprung und 2 Vektoren des Dreiecks als Basisvektoren
- ▶ Dann gilt für jeden Punkt p in diesem KS mit α, β, γ ∈ ℝ
 - $p(\alpha, \beta) = a + \beta(b a) + \gamma(c a)$
- ► Umformen mit $\alpha = 1 \beta \gamma$ ergibt die BK des Dreiecks zu:

$$p(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$$
, mit:
 $\alpha + \beta + \gamma = 1$



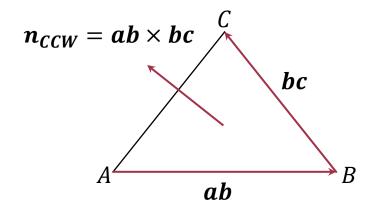
2D Baryzentrische Koordinaten II

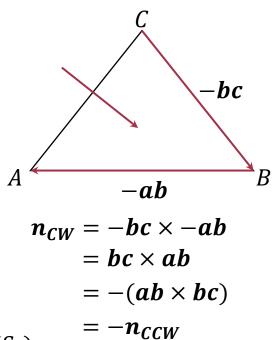
- $p(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$
- \triangleright Gesucht: β
 - β ist Distanz zur Geraden durch a und c
 - $k \cdot f_{ac}(x, y) = \beta$
 - β im Punkt **b** ist 1
 - $k \cdot f_{ac}(x_b, y_b) = 1 \Longrightarrow k = 1/f_{ac}(x_b, y_b)$
 - Einsetzen: $\beta = \frac{f_{ac}(x,y)}{f_{ac}(x_b,y_b)}$
- γ: Analog
- $\rightarrow \alpha = 1 \beta \gamma$
- Anwendungsbeispiel (Übung):
 - Gegeben: Dreieck *ABC*
 - Punkte *D*, *E*, *F* enthalten?



Vorder- und Rückseite

- Gegeben: Betrachter schaut auf Dreieck und sieht die "Vorderseite"
- Normale aus Kreuzprodukt der Kantenvektoren in Abhängigkeit des Drehsinns
 - Gegen Urzeigersinn (CCW): Normale zeigt zum Betrachter
 - Im Urzeigersinn (CW): Normale zeigt vom Betrachter weg
- Definiere positiven Drehsinn: CCW
- Dann: Zeigt Normale eines Dreiecks im Raum zum Betrachter, so ist dieses die Vorderseite

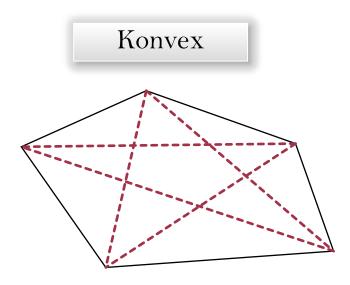




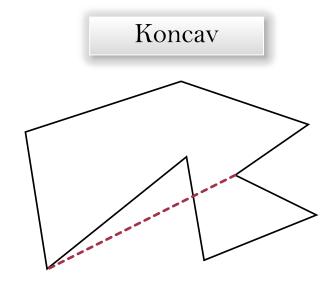
2.4

Polygone

Polygon



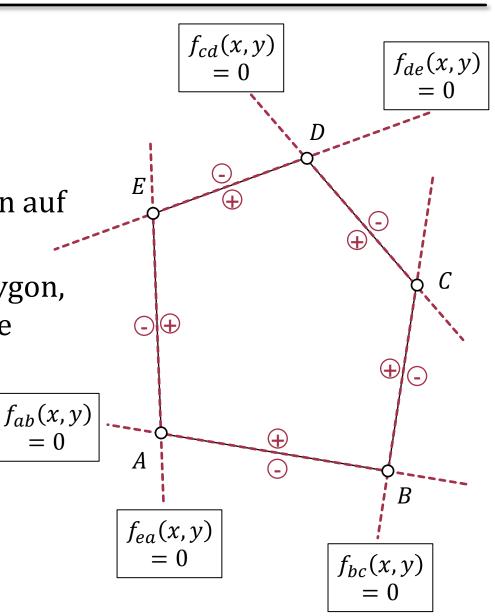
Alle Verbindungslinien der Eckpunkte innerhalb des Polygons



 Mindestens eine Verbindungslinie nicht innerhalb des Polygons

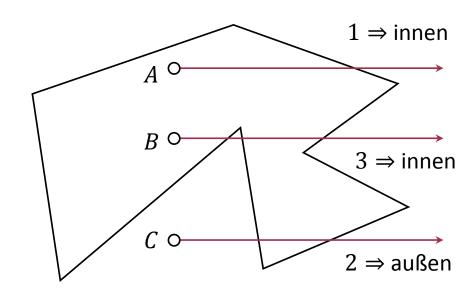
Punkt in konvexem 2D Polygon

- Gegeben: Konvexes Polygon
- Punkte innerhalb?
- Lege implizite Geraden durch Kanten, sodass jeweils Polygon auf positiver Seite
- Dann: Punkt in konvexem Polygon, wenn in Bezug auf jede Gerade "Half Edge" auf positiver Seite



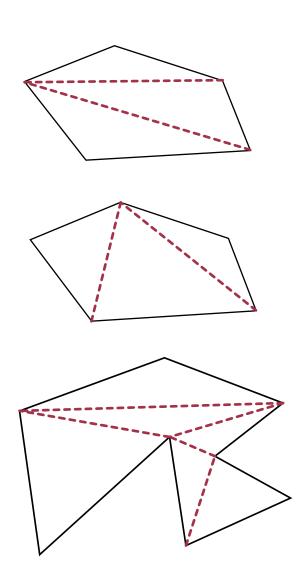
Punkt in 2D Polygon

- Gegeben: Polygon
- Punkte A, B und C innerhalb?
- Schieße Strahl nach rechts und berechne Schnittpunktzahl mit Kanten
 - Ungerade: Punkt innerhalb
 - Gerade: Punkt außerhalb
- Funktioniert mit beliebigen Polygonen



Dreieck vs. Polygon

- Dreieck ist...
 - Konvexes Polygon
 - Garantiert eben
- Eckpunkteigenschaften können linear und eindeutig interpoliert werden
- Jedes Polygon kann in Dreiecksnetz überführt werden...
- ... Topologie ist allerdings nicht eindeutig



2.5

Krummlinige Koordinaten

Polarkoordinaten

Definiert über:

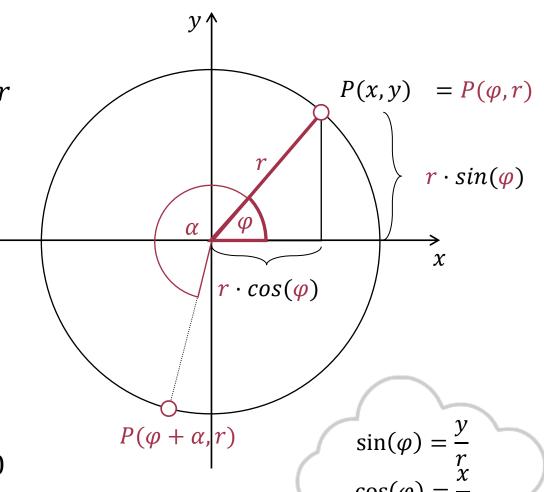
- Abstand zum Ursprung r
- Winkel φ
- Überführung in Kartesische K:

•
$$x = r \cdot cos(\varphi)$$

- $y = r \cdot sin(\varphi)$
- Umgekehrt:

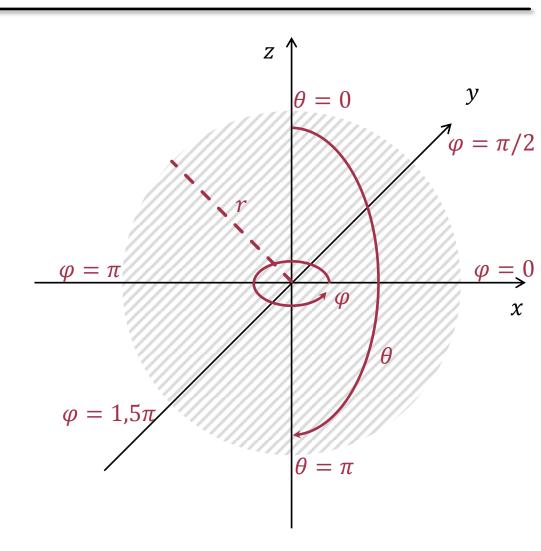
$$\bullet \quad r = \sqrt{x^2 + y^2}$$

•
$$\varphi = \begin{cases} +\arccos(\frac{x}{r}), y \ge 0 \\ -\arccos(\frac{x}{r}), y < 0 \end{cases}$$



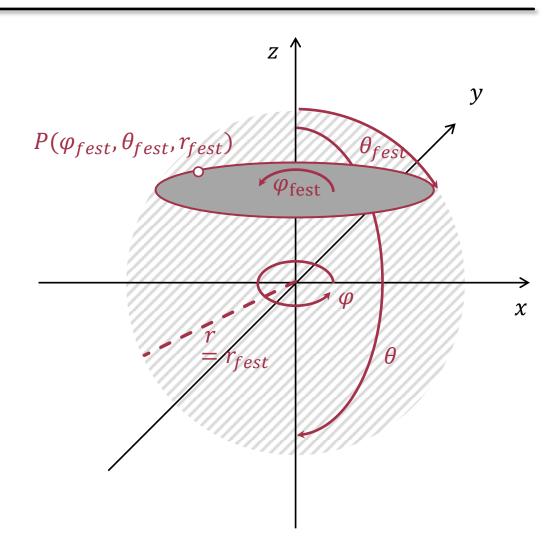
Kugelkoordinaten

- Definiert über zwei Winkel und Radius
- Abstand r zum Ursprung
- Winkel φ in der xy Ebene
- \triangleright Winkel θ zur z-Achse



Kugelkoordinaten II

- r = R = konstant:
 - Oberfläche der Kugel mit Radius R
- \triangleright r und θ konstant:
 - Rand einer Kreisscheibe parallel zur xy – Ebene
- $ightharpoonup r, \varphi$ und θ konstant:
 - Punkt auf Kugeloberfläche
- Kugel:
 - $r \leq Kugelradius$
 - φ und θ frei



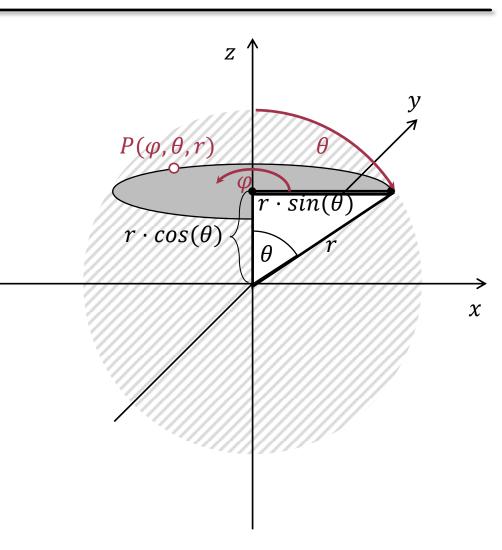
Kugelkoordinaten III

Überführung in Kartesische Koordinaten:

$$x = r \cdot \sin(\theta) \cdot \cos(\varphi)$$

$$y = r \cdot \sin(\theta) \cdot \sin(\varphi)$$

$$z = r \cdot cos(\theta)$$



2.6

Matrizenrechnung

Matrix aus Zahlen

- $> m \times n$ Matrix ist rechteckiges Zahlenschema mit $m \cdot n$ Elementen
- Hinweise:
 - Spaltenvektor $\sim m \times 1$ Matrix
 - Zeilenvektor $\sim 1 \times n$ Matrix
- Dann besteht Matrix aus:
 - *n* Spaltenvektoren, bzw.:
 - *m* Zeilenvektoren
- Geeignet einige Berechnungen elegant darzustellen

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

 $a_{m,n}$, bzw.: $a_{zeile,spalte}$

Matrizenmultiplikation

- Möglich, wenn Spaltenzahl der linken mit Zeilenzahl der rechten Matrix identisch
- ▶ Dann ist $l \times n$ Matrix C Produkt aus $l \times m$ Matrix A und $m \times n$ Matrix B.
- Ihre Komponenten sind:

$$c_{ij} = \sum_{k=1}^{m} a_{ik} \cdot b_{kj}$$

- Assoziativ- und Distributivgesetz gelten
- Kommutativgesetz nicht

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} \\ b_{21} \end{pmatrix} = \begin{pmatrix} c_{11} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21} & c_{12} = a_{11} \cdot b_{12} + a_{12} \cdot b_{22} \\ c_{21} = a_{21} \cdot b_{11} + a_{22} \cdot b_{21} & c_{22} = a_{21} \cdot b_{12} + a_{22} \cdot b_{22} \end{pmatrix}$$

Transponierte- und Einheitsmatrix

Transponierte Matrix A^T entsteht aus Matrix A, indem alle Zeilenvektoren als Spaltenvektoren hingeschrieben werden:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{pmatrix} \qquad \mathbf{A}^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{12} & a_{22} & a_{32} & a_{42} \end{pmatrix}$$

Einheitsmatrix ist neutrales Element bez. Matrix-multiplikation. Diagonalelemente sind 1 andere 0.

$$\boldsymbol{E} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Inverse Matrix & Determinante

- \triangleright Gegeben: Quadratische Matrix A mit det(A) \neq 0
- \triangleright Gesucht: Inverse Matrix A^{-1} , mit:
 - $A \cdot A^{-1} = E = A^{-1} \cdot A$
- ➤ Determinante *det*(*A*) oder |*A*| determiniert, ob *A* invertierbar ist.

Anwendungsbeispiel

- ightharpoonup Typisch: Gegeben Vektor $oldsymbol{u}$ und Matrix $oldsymbol{M}$
 - Manipuliere \boldsymbol{u} mit \boldsymbol{M} , um \boldsymbol{v} zu erhalten
 - Dazu: $\boldsymbol{v} = \boldsymbol{M} \cdot \boldsymbol{u}$
 - Beispiel: "Verschiebe $oldsymbol{u}$ mit $oldsymbol{M}$ nach $oldsymbol{v}$ "
- > Manchmal auch umgekehrte Richtung gesucht
 - Bekannt: \boldsymbol{v} , \boldsymbol{M}
 - "Woher kommt $oldsymbol{v}$ "
 - $M \cdot u = v$
 - $M^{-1} \cdot M \cdot u = M^{-1} \cdot v$
 - $E \cdot u = M^{-1} \cdot v$
 - $u = M^{-1} \cdot v$

Berechnung der Determinanten

- > Aufwändig: n! Summanden
- Beispiele:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} +a_{11} \cdot a_{22} \\ -a_{12} \cdot a_{21} \end{vmatrix}$$

Adjunkte A_{ik}

 $ightharpoonup A_{ik} \coloneqq (-1)^{i+k} \cdot Unterdeterminate\ bzgl.i,k$

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \qquad \mathbf{A}_{23} = - \begin{vmatrix} a_{11} & a_{12} & a_{14} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix}$$

Mit Entwicklung über Zeile i lässt sich die Determinante berechnen über:

$$det(A) = \sum_{k=1}^{4} a_{ik} \cdot A_{ik}$$

Berechnung der inversen Matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\mathbf{A^{-1}} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} A_{11} & A_{21} & A_{31} & A_{41} \\ A_{12} & A_{22} & A_{32} & A_{42} \\ A_{13} & A_{23} & A_{33} & A_{43} \\ A_{14} & A_{24} & A_{34} & A_{44} \end{pmatrix}$$